

# Analysis of the optimization of the secondary hot piping for a sodium fast reactor

**O. Ancelet**<sup>1</sup>, M.N. Berton<sup>2</sup>, M. Blat<sup>3</sup>, F. Dalle<sup>1</sup>, Ph. Dubuisson<sup>1</sup>, O. Gelineau<sup>4</sup>, Y. Lejeail<sup>2</sup>

<sup>1</sup> CEA, Saclay – France
<sup>2</sup> CEA, Cadarache – France
<sup>3</sup> EdF, Les Renardières, France
<sup>4</sup> Areva, Lyon, France



- President J. Chirac decided to launch a new prototype of generation IV reactor in France in 2020.
- One type of reactor investigated is a sodium fast reactor (SFR) with an expected live of 60 years as minimum, a high temperature of 550°C, a good disponibility (small time of repair, inspection, maintenance), a higher level of security.
- For this reactor some 'new' material are investigated in order to replace the 316L(N) stainless steel
- The 9 Cr steel is a candidate material for Generation IV reactor for its thermal propriety (for secondary loops, steam generator and heat exchanger). For that T91 and P92 steels are investigated in the CEA.



#### Picture of SFR reactor (pool system)



- 1. general overview of the RCC-MR
- 2.Introduction
- 3. Presentation of the study
- 4.Optimization of a piping line
- 5.conclusion

# **General objectives**

> This document describe either:

- Design rules
- The fracture mechanics parameter calculation (A16 appendix)
- The associated criteria
- Material data for the investigated materials
- This document constitute a reference for assessment at high temperature in France:
  - For FBR design and inspection
  - For GEN IV design (HTR and VHTR reactors)
  - For ITER (Vacuum vessel)
- At low temperature, the coherence with PWR code is ensured (RCC-M code)



### Codification

#### CEA member of the <u>AFCEN</u>

- RCC-M : PWR Design and construction (ASME Sec. III II V IX)
- RCC-MR : High temperature reactors and ITER (ASME Sec. III & NH)
- RCC-MX : Research reactors and related devices
- RSE-M : In-Service code applicable to PWR (ASME XI)

#### Important activities in LISN

- Pilot of the RCC-MX production
- Leader with AREVA on the RCC-MR production
- Participation to WGs for the RSE-M section
- Some exchanges with ASME



| RCC-M                                                                                                                                                          | RSE-M                                                                                                                                           | RCC-MR                                      | RCC-MX                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------|
| (PWR)                                                                                                                                                          | (PWR)                                                                                                                                           | (FBR, ITER,)                                | (Research R)                   |
| 1 <sup>st</sup> edition : 1980                                                                                                                                 |                                                                                                                                                 |                                             |                                |
| 2 <sup>nd</sup> edition : 1983                                                                                                                                 |                                                                                                                                                 |                                             |                                |
| 3 <sup>rd</sup> edition : 1985                                                                                                                                 |                                                                                                                                                 |                                             |                                |
| 4 <sup>th</sup> edition : 1988                                                                                                                                 |                                                                                                                                                 | 1 <sup>st</sup> edition:1985                |                                |
| 5 <sup>th</sup> edition : 1993                                                                                                                                 | 1 <sup>st</sup> edition : 1990                                                                                                                  | 2 <sup>nd</sup> edition : 1993              |                                |
| 6 <sup>th</sup> edition : 2000<br>> 1 <sup>er</sup> addendum : june 2002<br>> 2 <sup>ème</sup> addendum : dec. 2005<br>> 3 <sup>ème</sup> addendum : june 2007 | 2 <sup>nd</sup> edition : 1997<br>> 1 <sup>er</sup> addendum : 1998<br>> 2 <sup>ème</sup> addendum : 2000<br>> 3 <sup>ème</sup> addendum : 2005 | 3 <sup>rd</sup> edition : 2002              | 1 <sup>st</sup> edition:2005   |
| 7 <sup>th</sup> edition : 2007                                                                                                                                 |                                                                                                                                                 | 4 <sup>th</sup> edition : 2007              | 2 <sup>nd</sup> edition : 2008 |
|                                                                                                                                                                |                                                                                                                                                 | 5 <sup>th</sup> edition : RCC-MRx Nov. 2011 |                                |

➢ the objective of the present work is to compare the 2 materials for an creep-fatigue analysis (which is generally the most critical point for design) of a secondary hot piping for a sodium fast reactor

No buckling are taken into account in this study

Introduction

Study based on the secondary hot piping considered for European Fast Reactor (EFR) and originally designed

- ♦ for a period of 40 years with a disponibility rate of 80%
- ♦ With the 316L(N) stainless steel
- ♦ With a maximum temperature of 525°C
- ♦ With the RCC-MR 1993 creep-fatigue rules

> Since that time, some changes took place:

- ♦ A potential new material : Mod.9Cr-1Mo
- ♦ An increased required life from 40 to 60 years
- A new issue of the RCC-MR rules in 2007 with an important improvement of the creepfatigue rules

## **Optimization of a piping line**



> This part is aimed at optimizing the design of the secondary hot piping between the heat exchanger and the steam generator for the EFR project.

> It was originally designed for 316L(N) stainless steel in 1995, which leads us to ask some questions :

- ♦ what are the consequences of the new modification of the RCC-MR 2007 rules ?
- ♦ Can we shorten the piping line with the use of mod.9Cr-1Mo ?

> Description of the analysis :

- The analysed piping line has a length of 82 meters and contains 4 elbows. The outside diameter of the piping is D = 711 mm with a thickness of hc = 11 mm. The radius of curvature of the elbow is R = 1067 mm and the thickness is hc = 14.2mm.
- The cycle loading choice, based on the previous analyses, corresponds to the cycle which maximize the secondary stress range (i.e. the creep fatigue damage) with a hold time of 524 hours. Forces coming from weight and supports are neglected, but a pressure stress is included in the study.
- ♦ All the calculations were performed with the finite element software CAST3M.
- The material data for 316L(N) and mod. 9Cr-1Mo steels are taken from the appendix A3 of the RCC-MR (2002 or 2007) for a maximum temperature of 525°C.

➢ for the 316L(N) steel, the maximum reference thermal stress is 94 MPa which implies a creep-fatigue damage for 100 cycles of d=0.0870 with the RCC-MR rules of 2002.

➢ for the Mod.9Cr-1Mo steel, the maximum reference thermal stress is 62 MPa which implies a creep fatigue damage for 100 cycles of d=0.0511 with the old RCC-MR rules of 2002.

> 9.40m-01 < 9.415+01 6.0 10. 15. 19. 24. 28 32. 32. 41. 45. 50. 54. 58. 63. 67. 72. ΥĒ. 80. 85. 89. 93. reference stress field under temperature cycling **Distorted EFR's IHX-SG pipe** and components displacements between 525 (amplification 10) and 20°C

#### CAST3M calculations with 316L(N)

 $\sim$  the creep-fatigue damage with the Mod9Cr-1Mo is lower than 316L(N) value,

> It may allow to shorten the length of the piping for the first material.

◊ with the Mod9Cr-1Mo, 10 meters could be removed (on the whole 82 meters piping line). → d = 0.0826



#### <u>CAST3M calculations with Mod.9Cr-1Mo</u>

The same analysis is performed with the same material data but with the new RCC-MR 2007 rules

These rules allow to have a better creep-fatigue damage evaluation thanks to a better estimation of the stresses during the hold time.

> For both materials, the application of the new RCC-MR 2007 rules for these cases allows to decrease significantly the creep-fatigue damage by a ratio of 8 for the 316L(N) and 25 for the Mod.9Cr-1Mo.

String to shorten the piping line geometry: a new creep fatigue damage evaluation was performed with a new piping shortened by 17 meters and 2 elbows.

#### <u>Creep-fatigue damages for 316L(N) and mod. 9Cr-1Mo with various RCC-MR</u> <u>rules and piping designs</u>

| raise and piping accigne                           |             |             |             |             |  |  |
|----------------------------------------------------|-------------|-------------|-------------|-------------|--|--|
|                                                    | RCC-MR 2002 |             | RCC-MR 2007 |             |  |  |
|                                                    | 316L(N)     | mod 9Cr-1Mo | 316L(N)     | mod 9Cr-1Mo |  |  |
| Original piping line                               | 0.0870      | 0.0511      | 0.0104      | 0.0021      |  |  |
| Piping line shortened by 10 meters                 |             | 0.0826      |             | 0.0061      |  |  |
| Piping line shortened by 17 meters<br>and 2 elbows |             |             | 0.0513      | 0.0294      |  |  |

➤ The maximum reference thermal stress implies a creep fatigue damage for 100 cycles of d=0.0513 which is largely smaller than the creep-fatigue damage calculated in the previous conditions.

- It seems not possible to reduce the distance between the two components (i.e. steam generator and heat exchanger).
- So for this piping line configuration, the use of the Mod.9Cr-1Mo do not bring any advantage about the creep-fatigue damage.



#### CAST3M calculations with 316L(N) (shortened pipe)

> The maximum reference thermal stress implies a creep fatigue damage for 100 cycles of d=0.0513 which is largely smaller than the creep-fatigue damage calculated in the previous conditions.

- It seems not possible to reduce the distance between the two components (i.e. steam generator and heat exchanger).
- So for this piping line configuration, the use of the Mod.9Cr-1Mo do not bring any advantage about the creep-fatigue damage.

these results just underline the improvements of the creep-fatigue rule in the RCC-MR code.

- ✤ buckling analyses should be performed.
- Moreover, some configurations described here may not be sufficiently stable under different loadings, including a seism.
- *§ future RCC-MRx rules will have improvements for the design of pipes under buckling.*

## **Conclusions and perspectives (1)**



> Mod. 9Cr-1Mo steel (T91) is a candidate material for Sodium Fast Reactor (SFR) components and in particular for secondary hot piping. As compared to austenitic stainless steels used in the past reactors, 9Cr-1Mo steel's good conductivity and low thermal expansion let the possibility to reduce the size of the loops and thus to gain on the costs.

➤A numerical analysis on secondary hot piping design has been carried out using a stainless steel 316L(N) (used in the previous SFRs Phénix and Super Phénix) and a mod. 9Cr-1Mo steel.

- The aim of this study is to optimize the secondary hot piping by minimizing the size of the loop and by comparing both candidate materials.
- This analysis deals with the secondary piping considered for the European Fast Reactor (EFR) and the design has been made for realistic operating conditions of EFR for a period of 60 years.
- The analysis is based on the creep-fatigure damage and the application of the RCC-MR rules.

## **Conclusions and perspectives (2)**



➤ The improvement of the RCC-MR rule about the creep fatigue damage evaluation in the last issue of the RCC-MR 2007 leads to a better evaluation of the creep fatigue damage.

✤ This alone improvement allow to optimize a lot the geometry of the piping.

➤ The results show that the use of mod. 9Cr-1Mo steel has generally an advantage for moderate temperature (below 525°C).

> But, when the temperature is more important, stainless steel 316L(N) presents lower damage than 9Cr steel.

- Indeed, thanks to advantageous thermal properties of mod 9Cr-1Mo steel, the stress state due to mechanical and thermal loading for this material is 20 to 30% lower than this of 316L(N) stainless steel.
- But at high temperatures this benefit is too low to compensate for the lower creep properties of 9Cr steel.

> These results must be confirmed with buckling analyses

*§ future RCC-MRx 2011 rules will have improvements for the design of pipes under buckling.* 



## Thank you for your attention